Conditional Generative Model Based Predicate-Aware Query Approximation

نویسندگان

چکیده

The goal of Approximate Query Processing (AQP) is to provide very fast but "accurate enough" results for costly aggregate queries thereby improving user experience in interactive exploration large datasets. Recently proposed Machine-Learning based AQP techniques can low latency as query execution only involves model inference compared traditional processing on database clusters. However, with increase the number filtering predicates(WHERE clauses), approximation error significantly increases these methods. Analysts often use a predicates insights discovery. Thus, maintaining important prevent analysts from drawing misleading conclusions. In this paper, we propose ELECTRA, predicate-aware system that answer analytics-style much smaller errors. ELECTRA uses conditional generative learns distribution data and at runtime generates small (~1000 rows) representative sample, which executed compute approximate result. Our evaluations four different baselines three real-world datasets show provides lower baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A BOVW Based Query Generative Model

Bag-of-visual words (BOVW) is a local feature based framework for content-based image and video retrieval. Its performance relies on the discriminative power of visual vocabulary, i.e. the cluster set on local features. However, the optimisation of visual vocabulary is of a high complexity in a large collection. This paper aims to relax such a dependence by adapting the query generative model t...

متن کامل

A confidence-aware interval-based trust model

It is a common and useful task in a web of trust to evaluate the trust value between two nodes using intermediate nodes. This technique is widely used when the source node has no experience of direct interaction with the target node, or the direct trust is not reliable enough by itself. If trust is used to support decision-making, it is important to have not only an accurate estimate of trust, ...

متن کامل

Statistical Spoken Language Understanding: from Generative Model to Conditional Model

Spoken Language Understanding (SLU) addresses the problem of extracting semantic meaning conveyed in a user’s utterance. Traditionally the problem is solved with a knowledge-based approach. In the past decade many data-driven statistical models have been proposed, all of them are in the generative framework. In our previous study, we have introduced a HMM/CFG composite model. It is a generative...

متن کامل

Generative Class-conditional Autoencoders

Recent work by Bengio et al. (2013) proposes a sampling procedure for denoising autoencoders which involves learning the transition operator of a Markov chain. The transition operator is typically unimodal, which limits its capacity to model complex data. In order to perform efficient sampling from conditional distributions, we extend this work, both theoretically and algorithmically, to gated ...

متن کامل

Conditional Generative Adversarial Nets

Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i8.20800